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I .  Phys. A Math. Gen. 27 (1994) 943-954. Printed in the~UK 

Bilinearization of multidimensional topological magnets 

L Martinat, 0 K PashaevtS and G Solianit 
t Dipartimento di Fisica dell’universita and INFN Sedone di Lecce, 73100 kccc .  Italy 
t Joint Institute for Nuclear Research, 141980 Dubna, Russia 

Received 11 November 1992 

Abshact. A classical magnetic model with wmpact su(2) and non-compact su(1,l) spin 
phase space admitting the Hirota bilinear form is presented in an arbitrary number of 
space dimensions. The essential point of the construction is the presence of a velocity field 
with non-trivial vorticity tensor related to a topological current density. The model 
modifies in particular a variety of familiar topological equations, such as the Heisenberg 
ferromagnets and the (2+ 1)-dimensional O(3) a-model. Using the bilinear represen- 
tation, several special cases and exact solutions of physical interest (spin waves, domain 
walls and vortices) are considered. 

1. Introduction 

In field theories governed by integrable nonlinear differential equations, an important 
role is played by those kinds of solutions, such as for example, solitons and vortices, 
which find applications in different physical areas [l]. We recall, for instance, the 
recent discovery of localized solitons in 2 + 1 dimensions [2] and the studies made to 
extend their search in higher dimensions 131. One of the most interesting aspects of the 
dynamics of these solutions is that they can simulate inelastic scattering processes of 
quantum particles as creation and annihilation, fusion and fission, and interactions 
with virtual particles [2,~4]. Therefore, we notice that in connection with the compIete 
integrability of a given nonlinear field model. the existence of a linear probIem 
associated with the underlying equation of motion is crucial. This feature may help to 
build up the corresponding 0-model representation via the gauge equivalence theory 
[9]. On the other hand, special attention should be paid to those nonlinear u-models, 
which are endowed with topological structures [6] .  Concerning these models, many 
effects have been shown in the quantization of planar localized solutions. The latter 
have a fractional or even irrational spin and obey peculiar statistics, which are 
intermediate between the Bose-Einstein and Fermi-Dirac statistics [7]. These pheno- 
mena occur in the treatment of the quantum Hall effect and high temperature 
superconductivity [8]. Some attempts also exist to describe topological localized 
solutions in 3 +  1-dimensional systems by introducing the Cheru-Simons and Hopf 
invariants [9]. 

The above considerations suggest that any construction of physical nonlinear 
models, possibly with non-trivial topological structures, allowing analytical studies of 
the dynamics of solutions would be appreciated. 

Following this line of research, here we present and investigate a multidimensional 
classical nonlinear magnet model with compact (sphere S’) and non-compact (pseudo- 
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sphere SI.’) spin phase space, having a velocity field with a vorticity related to a 
topological charge density. Our model modifies in some interesting well known 
nonlinear field systems such as the Heisenberg ferromagnets, their generalization to 
anisotropic crystals with magnetic ordering depending on the spacial directions, the 
nonlinear u-models, the Ishimori and the Ernst equation and many others [l, 10-131. 

The main purpose of this work is to study the equations of the model by means of 
the Hirota bilinearization technique [14]. Adopting this procedure, we obtain exact 
solutions of domain wall type, spin waves and vortices. In section 2 we describe our 
model and discuss some reductions corresponding to particular space dimensions. In 
section 3 we write our model in a bilinearized form, while in section 4 we present 
examples of exact solutions. Finally, section 5 contains some concluding remarks. 

2. The model 

In order to formulate our model, let us consider a D-dimensional pseudo-Euclidean 
space RP,‘ ( D = p + q )  with metric tensor g,:=diag(+, ,. . . , +, -, . . . , -). The 
model describes the time evolution of the unlt ‘spin’ vectors S = (SI, S,, SJ according 
to the Landau-Lifshitz equation [U] in a local moving frame with velocity U,&,, t ) ,  
where Sj=S,(x, , t)  (x , ,= (x l , .  . . . . xD) )  and S’j+x’(S?+S$)=l. S belongs to the 
sphere S’, or to the pseudosphere SI.’, when x z = l  or x2=-1, respectively. The 
vorticity tensor of the velocity field up is assumed to be related to the gradient of the 
spin field vector as follows 

s,+ u.a,s =s x apa,s (2.1~) 

a,u,- ~ , U , = ~ K ~ S . ( ~ , S  x a,s) (2.16) 

where p, Y =  1,2,. . . , D. Here (a X b),=f,,.a,b, is the exterior product associated 
with the structure constants fi” of the su(2) and su(1,I) algebras, a,=a/ax, and 

The interaction between the spin and the velocity fields is suggested by several 
examples concerning integrable models, like the Ishimori moder [U], the 
Davey-Stewartson equation [I61 and by the Papanicolau equation [13]. On the other 
hand, we recall that equation (2.lb) defines essentially the topological current 
pertinent to the 0 (3) nonlinear u-model [6],  which implies a conserved topological 
charge for D = 2 and 3. 

In the context of the nonlinear u-model, equation (2 . lb)  is invariant under a local 
gauge transformation U; = U,, + a,a (being a = a(x,, t ) ,  any differentiable function). 
Thus one can interpret the velocity field U,,, as a gauge potential, leading to a new 
topological conserved quantity, the Hopf invariant, which describes the homotopy 
classes zj(S’) = Z  [17]. So one is able to handle the spin and the statistics of the 
topological configurations (skyrmibns) of the model 161. However, since (2.la) 
includes explicitly the field up, our model is not invariant under the above-mentioned 
gauge transformation. 

Finally. we notice that (2.lb) is inspired by the Mermin-Ho relation [IS], which 
occurs in the theory of quantized vortices in the superfluid ’He. 

In order to demonstate the great versatility of the model proposed here, we shall 
discuss some special cases, which can be obtained from (2.1) and from their different 
versions derived in section 3. In brief, we shall limit ourselves to a few examples in 
D > 1 dimensions. A systematic treatment of all the cases will be presented elsewhere. 

a# = g s ~ ~  
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2.1. Models in D = 2 dimensions 
In the static limit for u’=O, equation (2.10) provide the (integrable) su(2) and 
su(1, l )  nonlinear u-models in two-dimensional Minkovskian or Euclidean space, 
respectively. according to the metric tensor g”’ [20]. Conversely, the case U,,= 
constant was considered by Papanicolau [13], in connection with the study of the static 
configurations of planar ferromagnets. In [I31 the Lax pair of the system and a duality 
transformation were found. 

Let us suppose that the two-dimensional velocity field is represented in terms of a 
real scalar field $. namely 

% = a y $  uy=a2ga,$ ( a ’ = t l )  (2.2) 
with~metric tensorg””=diag(l, a’). Then system (2.1) reduces to the Ishimori model 
[U]. This model, both in the compact and the non-compact version [21], is important 
because it is the first example of a nonlinear spin field model on the plane, allowing a 
Lax pair formulation. It admits exact solutions, which are classified by an integer 
topological charge (localized solitons [22] ,  vortex-like , [ l l ] ,  closed string-like, and 
doubly periodic solutions [21]). Furthermore, one can show that, in general, the 
Ishimori model is gauge equivalent to the complex Davey-Stewartson equation [19]. 
However, for a>= - 1 the Ishimori model is gauge equivalent to a reduced case of the 
sg-called DS-I1 equation [9]. 

2.2. Models in D = 3  dimensions 
In the static limit, for up=O equation ( 2 . 1 ~ )  provide the su(2) and su(1, l )  three- 
dimensional nonlinear u-model. Integrable reductions for this model are well known 
[l, 20,231. 

Let us assume that the spin field takes an axially symmetric configuration (that is 
S = S ( p , z ) ,  where p = ( ~ ~ + y ’ ) ” ~ ) .  Then in the su(2) case we obtain the Heisenberg 
model [lo]; on the other hand, in the su(1, l )  case we have the Ernst equation for 
axially symmetric gravitational fields [12]. This equation admits a Lax pair and soliton 
solutions [24]. 

Finally, we observe that when restricting ourselves to the field configurations 
satisfying the constraint 

s x a.a,s = 0 (2.3) 
the equation (2 .1~)  is reduced to the Euler equation for the vorticity field S = V x U 
[251, which can be put into a Hamiltonian form [26]. On, the other hand, equation 
(2.3) can be regarded as the stationary Landau-Lifshitz equation for isotropic 
ferromagnets or, from another point of view, as the nonlinear u-model. These 
equations have solutions of the vortex type at least in two dimensions (instantons). 
Then, if we assume that such static solutions depend parametrically on time according 
to the Euler equation, we obtain a vortex hydrodynamics for a perfect fluid, 
eventually incompressible if the supplementary condition Wu,, = 0 is satisfied. 
Actually, the total magnetization M=/Sd”x for (2.1) is conserved only if the last 
constraint on the velocity field is verified. 

3. Bilinearization of the model 

For our purposes, it is convenient to have (2.1) in a different form. We perform the 
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stereographic projection of the spin vector S on the complex plane <by means of the 
relationships 

So the equations of motion (2.1) take the form 

where the overline denotes the complex conjugate. 

complex functions f and g such that 
Now in order to derive the Hirota represenation of the model, we introduce two 

(3.3) 
, .  

b=g/f .  
Then the ‘projective’ representation of the spin components (3.1) is given by 

By substituting (3.3) into (3.2a), after some algebra we obtain a complicated 
equation, which can be put in the bilinearized form 

D, ( fo f - lc ’gog)=O I >  
(3.5) 

where D, and D, are the Hirota operators, defined by 

D ; , D : ~ ( x , ,  . . . , xD,  ~ ) o B ( x , ,  . . . ,xD,  t )  

=(a,-a#)i(a,- a,;)”(x,, . . . , x , , t )b (x ; ,  . . . X D ,  t’),=,, ,,=, . (3.6) 
DJ‘=gp”D, and D’= DI‘D,. 

Equation (3.5) is satisfied by putting 

(iD,- 0’) (fig) = 0 
( i 4 -  D’) (Pf- K ’ g o g )  = 0 

(3.7a) 

(3.7b) 
while the velocity field is 

Since the expression (3.8) for the velocity field U, fulfils (3.2b), a solution (5, U,) of 
system (3.2) is obtained by solving (3.7) forfandg and using the definitions (3.3) and 
(3.8). 
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4. Special solutions 

4.1. Special solutions in D = 2  dimensions 
First we show some interesting particular solutions of the model in the case 0 = 2 .  
Now the bilinear system (3.7) to (3.8) takes the form 

(if),- D:-a'D:)(Jbg) = O  (411a) 

(iD,- 0:- a%;) (?of- xZg.g) =O. (4.lb) 

Let us consider the case a'=l, which corresponds to the metric tensor grv= 
diag(1,l). Thus. by introducing the complex coordinates 

r = x + i y  i j  = x  - iy. (4.2) 
Equations (4.1) become 

(iD,-4f)i7)(Fg)=0 ( 4 . 3 ~ )  

( i ~ , - 4 ~ : ! ) ( f o f  - K'pg) = 0. (4.36) 

Confining ourselves to look for analytical solutions of equations (4.3), i.e. in the case 
in which the relations 

aig=o a,f=o (4.4) 

8= f =g e-~'Y (4.5) 

hold, we can find 'ghost solutions'. For instance, in the su(2) case, we can choose 

where y, 6 ,  w and k are complex constants, with w=Z/kl ' .  Then we get 

Another example is given by the choice 

g = o  f = (4.7) 
which leads to 

C = O  S,=l s+=o ~ ( o , ,  U') =4(Im k, Re k). (4.8) 

Solutions of the form (4.6) and (4.8) can be used as asymptotic behaviour at infinity of 
solutions belonging to the topological sector. 

In order to obtain vortex solutions, we make the choice 

f= l  C=g. (4.9) 
Then, equations (4.1) reduce to 

(ia, + a f + a'a$)g = 0 (4. loa) 

a,gd,g+ a%,ga,g=! (4. lab) 

while the velocity field is given by 

U,, = (2ix2/(1 + x'lgl')) (&g -ga,g). (4.11) 

Under the assumption (4.9), from (4.10b) it follows that non-trivial solutions exist 
only for pseudo-euclidean metric tensor, that is for a'= - 1. In this case and using the 
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variables (4.2), the bilinear equations (4.1) read 

(ia,+ 2.8; + 2a$)g=o (4.12~) 

a,ga,g+a@Fg=o. (4.12b) 

Equation (4.12b) is identically satisfied by any analytical function g=g(r] ,  t). Then, 
equation (4.12~) reduces to the one-dimensional time-dependent Schrodinger 
equation 

(i&+ 28;)s = 0. (4.13) 

The simplest non-trivial solution of this equation is 

g=ehn-"+a. (4.14) 

where k = k ,  + ik,, UJ = - 2ik' and 6 is a constant. The third spin component and the 
velocity field are given by 

(4.15) 

where E=klx-k2y-4klk2t and pu=exp(Re6). Concerning the asymptotic behav- 
iour of the solution (4.19, we find that 

for E - + - -  &+ 1 and (u1, 0') = (0.0) 
for E+ + m S3-+-l and ( ~ 1 ,  4=4(k2 ,  ki). 

(4.16) 

This is a domain wall solution, located on the line E =  - In pO, where S3 = 0 (in the 
compact case) or S,-+ i CO (in the non-compact case). It propagates in the plane with 
velocity v =  (4kl, -4kl). The vorticity for this solution is 

(4.17) 

and the corresponding topological charge is divergent. A reason for this is that the 
asymptotic behaviour of the domain wall does not satisfy the compactification 
condition S3+1 forx2+y2+-.  

Following a well known procedure [27], we can expand the solution (4.15) in 
power series for k,<<l and R=&/k, =0(1). We have 

&U, - a,u,= 2K'(ki + k$) sech'g 

where r]=x+iy and t = k 1 ( l  +iR). 
Truncating the series (4.18) to a given N, we obtain an exact time-dependent 

N-vortex solution. We can easily see that the corresponding topological charge is just 
N .  In this sense a domain wall solution can be considered as a superposition of infinite 
number of vortices and, consequently, it possesses an infinite topological charge. 

Because of the linearity of (4.13), the superposition of M domain walls 
M 

g = 2 exp{kjV - wit + ai} w, = - 2ik& (4.19) 

is also a solution of the same equation. Expanding, as we have done above, in power 
series one of the exponentials appearing in (4.19), we obtain interactions involving 
vortices and domain wall solutions. 

, = I  
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Using the relations (4.9) (or more generally f=f), from (3.8) the  velocity field 
reduces to  the form 

while (3.h) can be written in terms of c only, namely 

(4.20) 

(4.21) 

We notice that this result holds for any dimension D.  
Finally, we recall that system (4.1) may provide solutions for the Ishimori model 

(see section 2). With this in mind, we need to know the scalar field @ in terms of the 
variablesfand g. This can be done with the help of (3.8) and the expressions (2.2). So 
the auxiliary field @ is such that 

Furthermore, the integrability condition a,@,= holds for a’= - 1. Exploiting the 
gauge equivalence technique, we can also find solutions of the Davey-Stewartson 
equation. For more details the reader is addressed to [9] and [19].8)) 

4.2. Special solutions in D = 3  dimensions 

In this subsection we show how to construct exact solutions with non-trivial vorticity 
tensor in three dimensions. 

In doing so, we start again from (4.9). Adopting the metrics defined by g,”= 
diag(1, a‘, pz), the bilinear equations (3.7) are reduced to the following system: 

(ia,+a:+ a’aj+p2a:)g=0 - -  (4.23~) 

a,ga,g+ a%,gaYg+B2a,ga,g= 0. (4.23b) 

Interesting solutions to this system exist only in the case of pseudo-Euclidean 

Let us assume g=exp{k.x-wt+d), where k=(k,,kz,&) is a complex three- 

k, = I k, I exPi@p (p= 1,2.3). (4.24a) 

I kll = /kl cos E. lkzl=lkl sinE. Ik3l=lkl (4.24b) 

with arbitrary real parameters E. and @,,. Then system (4.23) implies the dispersion 
relation 

iw=lkl’{cos’E. exp2i@,+sin2E. exp2i@z-exp2i@3}. (4.25) 

In analogy with the case D =2, we find the domain wall solutions moving in three 

~~ 

metrics. For definiteness we choose a?=l ,  p’= - 1. 

dimensional wave vector. parametrized in the form 
-~ 

dimensions, namely 

where 5 and 21, are linear combinations of (x ,  y, z ,  t)  given in termsof the 1, and $;S. 
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The asympotic behaviour of the component S, is Sj+k 1 for E +  T m. 

expandingg in terms of Ikl<<l: 
In order to obtain rational solutions, we adopt the same procedure used above, 

/D N 

g=gn exp(1kla) exdlkpibt}=g,, 2 lklN 2 (n!m!)-'a"(ibt)" (4.27) 
N=II a+Zm=N 

where 

a = x c o s A e x p i ~ , + y s i n d e x p i ~ ~ ~ z e x p i ~ ,  
b =cosz A exp 2iQl + sin'd exp 2iQZ - exp 2iQj. ~~ (4.28) 

For N =  1 we get static solutions. In this case the velocity field components are 

u , = ( 4 u n / A ) { y s i n d c o s d s i n ( ~ , - ~ ~ ) + ~ ~ ~ ~ d s i n ( Q , - ~ 3 ) }  

uz=(4un/A){-xsindcosdsin(Q,-Q2)+zsindsin(Qz-Q3)} (4.29) 

u3=(4u,lA){-xcosdsin(Q,-Q,)-y sind sin(&-Q3)} 

(4.30) 

i 
1 Un=K?lg,,jZlk12. 

where 

A=1+uo{xZcos2A+yZsinZA+zZ+2xysindcosAcos(Q,-~~) 
+ ~ z ~ o s d c o s ( Q ~ - ~ ~ ) + 2 y z s i n d c o s ( ~ ~ - ~ ~ ) }  

The spin field S can be expressed by (3.4) with the help of (4.27) for N =  1. By direct 
calculation we find that the vorticity tensor has non-vanishing components in any 
direction. In general, for an arbitrary N ,  we obtain time-dependent rational solutions 
of the vortex type in three dimensions. 

Now we observe that in our context it is possible to obtain a relativistic vortex 
dynamics in 2 + 1 dimensions. To this aim we consider static solution of the 3 + 1- 
dimensional version of (2.1) and regard the third coordinate z as a new time variable 
5. The equations of motion read 

2i(u,~.S-una,S)=[S, AS]-[S, a$] (a = 1,2) (4.31) L" a U -a,u,,=-iS[a,,S,a,S] (IC, v = o ,  1,2) 

which describe a relativistic nonlinear u-model for the spin matrix 

(4.32) 

Using the relations (4.9) and the complex variable (see (4.2)), the bilinear 
equations corresponding to system (4.31) are reduced to the form 

(4.33) 

Choosing the particular solution to this system of the form 

g= a7 + v 5 a  e% (4.34) 

we are led to a moving vortex solution with topological charge N =  1. 
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Another interesting example of exact solutions comes from the choice 
g = go cxp[x(e" 'I + e iB 'I - - 2eifa+B)12 r) I (4.35) 

where x> 0, a and are real constants. Resorting to an expansion in x analogous to 
(4.18), we arrive at time-dependent vortex-antivortex configurations. The simplest 
examples of such solutions correspond to the following expressions for g: 

= gox{e"'I + eVq - 2ei(~+B)'? 3 f o r N = l  (4.36) 
and 

=g 0 2-lx2{ei@'0 + e'8v - 2e47+B)/2Z)? forN=2. (4.37) 

Inserting these quantities into (3.1) and (3.8), we can build up the explicit- 
expressions for the spin field S and the velocity field U,,. 

4.3. Special solutions in higher dimensions 
Here we discuss some simple solutions in an arbitrary number of space dimensions. 
First, let us consider the case in which the space has an even number of dimensions 
D =2n and is endowed with the metrics g p v =  diag(I,, -In). Then we can exploit the 
bilinear equations (3.7), by introducing n complex coordinates q,=x,+ix,+, 
( I =  1,. . . , n ) ,  and the functionsfandg as in (4.9). Classes of particular solutions can 
be found by limiting ourselves to the case in which g is an analytical function (i.e. 
ai)g=O, (l=l,. . . ,a) ) .  In this way we are led to the n-dimensional linear 
Schrodinger equation for a free particle, which is a generalization of (4.13). Therefore 
we can extend the results achieved above, obtaining multidimensional domain wall 
solutions and superposition of domain walls and rational solutions with non-trivial 
vorticity. 

Second, in the case D = Z n + l  with g@"=diag(+l,, - 1) we consider the static 
solutions of (2.1). Regarding the (2n+ 1)th.wordinate as a new time variable 5. we get 
an extension of system (4.31). Consequently, using again (4.9), the relations corre- 
sponding to (4.32) read 

n 

a :g -42  a;,;g=o 
I= 1 

(4.38) 

I =  I 

These equations admit classes of solutions which suitably generalize the expres- 
sions (4.34) and (4.35). So we can provide topological solutions of vortex and vortex- 
antivortex type in 2n space dimensions. 

Finally, it is a remarkable fact that we can find spin-wave solutions for system (2.1) 
in any space dimension D. Indeed, the functions 

(4.39) 

where 

k,=(l+lc2p$'P,~ p =-lc'p' o( 1 + x'p$'Pu, 
(4.40) P 

w =  (1 -v'pi) (1 +v'p:)-zP; q= - xZpp:(l -K?p;)(l+ x2pP@-p; 
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are solutions of the bilinear equations (3.7). The corresponding stereographic projec- 
tion t is given by 

where PO = k - p, Po = w - q and the dispersion relation 

(4.41) 

(4.42) 

holds. Now one can show that for the SU(1,l) model in D = 1  and for the 
corresponding Ishimon-I1 version (D = 2 and gpv = diag(1, - l)), the dispersion rela- 
tion (4.42) can be suitably modified, assuming that the third component S, of the spin 
field depends on the wave number PO in a physically meaningful way. In order to be 
brief we shall skip all details (which wiIl be presented in [19]), here we claim that this 
possibility is assured by the gauge equivalence between the above-mentioned systems 
and the nonlinear Schrodinger equation of the repulsive type (NLS-) for D = 1, or the 
Davey-Stewartson equation (D = 2 ) ,  which provides, under proper boundary con- 
ditions, a description of a repulsive Bose gas (see the review article about spin models 
in [l]). For instance, a one-dimensional Bosc gas, whose particle density at infinity is 
E,,=p, can be described by solutions~ of NLS- which asymptotically tend to T p .  The 
gauge equivalence theory associates this type of solutions with spin-wave solutions of 
the Landau-Lifshifz equation (the one-dimensional reduction of system (2. l)), in 
such a way that the corresponding density of energy 

(4.43) 

is equal to the density of particles in the former case. From (4.41), the above- 
mentioned relatonship between densities can be satisfied only if the amplitude po will 
depend on the wavenumber PO, precisely 

(4.44) 

In the upper half-plane of the pseudosphere S’. I ,  the third component of the spin 
field is 

l+pZ (P;+4p)L” &=-- 
1-p;- PO 

(4.45) 

and the frequency Po has the Bogolyubov form 111 
PO = P,(P{ + 4p)’l’. (4.46) 

These solutions are known as ‘hole-like’ spin-wave [l]. 

following the same route, we are led to the dispersion relation 
For the Ishimori-I1 model, the situation is much more intricate. However, 

(4.47) 

which is different from the two-dimensional Bogolyubov dispersion relation. 
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Nevertheless, (4.47) reduces to (4.46) when one of the wavenumber components 
vanishes. Finally, for lPoll = IPo21, equation (4.47) provides a zero-mode (or ‘Gold- 
stone mode’) solution. 

~~ 

5. Conclusions 

We have proposed and analysed a multidimensional spin field model endowed with 
both a compact and a non-compact symmetry. The main feature possessed by the 
equations of motion is the coupling between the spin field and the velocity field, whose 
vorticity is connected with the topological current density. 

The model introduced particularly modifies some well known topological non- 
linear field systems; a few of them turn out to be lineanzable by a Caxa formulation 
and admit exact solutions mimicking a particle-like behavour. Although most of these 
solvable models arise from mathematical speculations, they might be a useful guide to 
build up more realistic field theories. This task could be made easier by a more 
complete study of (2.1), whose unifying character allows us to tackle globally many 
problems inherent to a whole class of topological nonlinear field models [19]. 

It should be also noted that (2.1) offer the possibility of clarifying the role of the 
symmetry structure of the spin phase space. In fact, in the cases where the spin field 
variables range over a compact or a~ noncompact manifold, equations (2.1) may lead 
to :solutions with different properties. 

To conclude, we observe that the approach based on the bilinearization technique 
reveals a powerful tool for handling nonlinear field equations such as (2.1). The 
results obtained produce new classes of exact solutions. Here we were concerned 
mainly with, the topological non-trivial solutions. Nevertheless, by the same tech- 
niques one could construct exponentially localized soliton solutions, which will be 
considered in a future paper. 

Finally, an important aspect regarding the model (2.1) is that it can cover a broad 
ran,ge of topics, from the propagation of domain walls, spin waves and magnetic 
vortices in condensed matter, to nonlinear field theories in high energy physics. 
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